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The existence of a denumerable set of stationary solutions with cylindrical or 

spherical symmetry for a nonlinear wave equation is proved directly by the vari- 
ational method. 

Stationary solutions of the nonlinear wave equation make it possible to estimate the 
characteristic space and energy parameters of light beams in a nonlinear medium, They 

were the subject of detailed investigation of the cubic wave equation [l-4], At consl- 
derable intensity of light waves the dependence of permittivity E = E (I,?$ ceases to be 

quadratic and becomes a complex function of field amplitude 14. The determination 

of the exact functional dependence a (IEI) for considerable fields in the presence of the 

Kerr orientational effect is very difficult and can be completed only in the case of the 

simplest model of noninteracting molecules [S]. It was established with the use of this 

model that a (IE]) is a monotonically increasing bounded function for all values of the 

amplltude of ]EI. An extension of the theory to interacting molecules does not alterthe 

monotonic&y of increase and boundedness of function a &!?I) . It only affects the mag- 
nitude of the field saturation and, also, the highest possible increase of the nonlinear per- 

mittivity [6, ‘I], One is faced with the problem of investigation of the existence of sta- 

tionary solutions without specifically determining the functional dependence a (/El), 
using only its bonndedness and monotonicity of increase. The method of the phase plane 

utilized in several papers [I. 31 cannot be applied here, since it is qualitative and has 

to be always checked by numerical calculations. Moreover, it should be noted that nu- 

merical calculations carried out for the simplest model of medium with saturating non- 

linearity [8, 91 in no way indicate the existence of stationary solutions for real media 
with the Kerr orientation effect. 

Using the direct variational method [lo, 111 it is shown here that the monotonicityof 

increase and the boundedness of function r &El) are sufficient conditions of the existence 
of a denumerable set of stationary solutions with cylindrical or spherical symmetry pos- 

sessing finite energy. The obtained results are applicable not only in nonlinear optics , 
but also in the nonlinear field theory of elementary particles, where, owing to the insta- 
bility of solutions of the cubic wave equation, it is necessary to introduce in the equation 
more complex nonlinear terms [8. 127. 

1, Exiatencs of the fundrmentrl moda, We call stationary the solution 
of equation 

(1.1) 

a solution of the form E = cp (r) eff-c, where 9 (r) is a function with an integrable 
square which satisfies the following equation and boundary conditions: 
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(1.3) 

where m = 0,1,2 is determined by the dimension of the Laplacian in Eq. (1.1). 
To prove the existence of solutions we shall consider the following variational prob- 

lem: to find the maximum of functional 

G (cp) = 5 F ($9 dv, 

1’ 
F(P) = \ f (rl) drip dv = rmdr 

for the class of positive functions with piecewisz smooth derivatives which satisfy bound- 
ary conditions (1.3) and the normalization 

N (cp) = s [(VT) 2 f- ~‘~21 dv = R = const (1.4) 

Function f (n) is positive and bounded for all 9, hence functional G (cp) for the class 

of introduced functions is bounded above 

G (CF) < $ f’p2dv < max f (v2) R/T 

Use is made here of the relationship 
‘0’ 

F ((~2) = fq” - i f;qdq < jrF2 

which is valid for f,,’ > 0. 
0 

In what follows we assume that f (0) = 0, lim n-t 00 f = M and f,,’ > 0 for all 

n > 0. Owing to the upper boundedness the functional G (cp) has an exact upper bound- 

ary h and there exists a maximizing succession of functions y, > 0 which satisfy the 

specified conditions, and for lim n - 00 G (Y,) = A. 

Let us prove that the maximizing succession y, can be always chosen so that its limit 

function y, is a positive solution of the equation 

GYO m dye 
- ----fYo+a(R)f(Yo2)Yo=0 dr2 + r dr (1.5) 

where a (R) is a continuous function of the normalization constant H . We juxtapose to 
each function y, the corresponding function U, which satisfies the equation 

d2u 
2 + 

m du 
-2 -wn+q(Y,2)Y,=0 

dr2 r dr (1.6) 

and boundary conditions (1.3). In this equation a, is determined by the normalization 
condition N (u,) = R. The solution of Eq. (1.6) may be written as 

m 

Un = an 5 f (yn2) y,g, (r, 5) df 
0 

(1.7) 

where gm (r-, E) is Green’s function of the homogeneous equation (1.6) with boundary 
conditions (1.3). The properties of Green’s function g,,, (r, Q, boundedness of f (~2) , 
and the normalization I,, imply the homogeneous boundedness of succession un 

o<u* (r)<~n (1 fpy,'4"d$" (“s “;;’ ‘) dE)l" < CR (1.8) 
0 0 



From (1.8) and (1.4) we obtain 

which implies the equicontinuity of succession U, [13]. 
Let us prove that for lim n -+ CO G (u,) = h. Since functions U, satisfy the same 

conditions as y,, hence G (u,) < h for all n. By virtue of condition that 1; > 0 the 

inequality 
G b,) > G (Y,) 4-m ( (un2 - Y,“, f (~,,2) dv 

J 
(1.9) 

is valid. Multiplying (1.6) by uyi, integrating over the whole space, and using Buniakow- 

ski’s inequality, we obtain 

(1.10) 

Multiplying (1.6) by y,, integrating, and using again Buniakowski’s inequality, after 

some simple transformations we obtain 

1j a an a f (Yr?) ?ln2 dv 
s (1.11) 

It follows from (1.9)-(1.11) that h > G (u,) >, G (y,J and Iim G (u,) = lim G (y,J = h 
for n--too. 

We have thus proved that the succession Us is a maximizing one uniformly bounded 
and eq~~o~tinuo~* It is therefore always possible to select as the input maximizing 

succession y, one which is ~iformly bounded and eq~continuo~. According to a known 

theorem it is possible to chose from among such successions ones that converge to con- 

tinuous limit functions gn and CL*, with G (yO) = G (uO) = h 1133. The inequalities 

(1.9)-(1.11) become equalities for the limit functions only if condition 

i 
(!/II - U”)2 au .= () Cl. 12) 

is satisfied. It follows from (1.12) and the continuity of u0 and y,, that at every point 

!/O (r) = uo (r). Since (1. 8) implies that y, and u,are bounded functions and 
03 LX . 

I f (Ye,? Y&,, (r., 5) 6 < CMR 
a 
’ 6, (i-s 5) df, < 00 

t 0 

hence it is possible to pass to the limit of the integrand in (1.7) 

(1.13) 

Differentiation of (1.13) with respect to r shows that y. satisfies Eq. (1.5) and boundary 
conditions (I. 3). Let us prove that for 0 < y < M it is possible to chose H so that 
a (R) = 1. From (1.5) we have the upper and lower estimates for CL 

It is evident from (1.8) that 

lim (max &) = fim (mas f (y,2)) = 0, R - 0 

Hence a (i?) - 00 when R - 6. Lot us now prove that a @f < 1 when A > R*. For 
this it is sufficient to find a positive function v for which the inequality 

iv (V) i G (‘U) = K / G (Y) < 1 
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is satisfied for the normalization N (Y) = R > R*. 

The positive solution of problem 

is such a function, 

dT -;i;i-+~~-yI!+M’\Y=O (T<M’<M) (1.14) 

dYP 
- =o 

dr I r=o ’ Y (r1) = 0, Y(r) = 0, r >rl 

Here r1 = z / If/M’ for m = 0, 2, r, = ~1 f V/M’ - y for 

m = 1 and X, = 2.41 is the smallest root of the zero-order Bessel function. It is possi- 

ble to prove that for M’ < M = max f and fi> 0 there exists such number B1 > 0 
that the inequality 

,%I’ ’ 32’Pdu < l fi (@2’S?) dv = G (PY) 
s 

(1.15) 

is satisfied for i3 > fir . It follows from (1.14) and (1.15) that N (f3lu) I G @Y) < 1 
when B > &. If we select the normalization constant R >R* = N (&VU) then 

Thus a (R) - CO when R - 0 and a (R) < 1 when R > R*, hence there exists a nor- 

malization constant R* > R, > 0 such that a (H,) = 1 and the limit function of the 

considered variational problem is a positive solution of Eq. (1.2). For y > M Eq. (1.2) 

has no solutions with an integrable square. Multiplying (1.2) by rp and integrating, we 
obtain 

;tl ~~2dr>/jtp2dv:,~~~ln~~.-k(S(FVlj2~~~~~~ldi. (1.16) 

We have used here the inequality 

5 (V’p)2dcj rQp2dv > k (m) 

where k (m) is a constant which depends only on the dimension of space m [14]. It 

follows from (1.16) that 
r2qGdv 

fif>r cr.9 = s 

s 

>.-.L 
cp2dv ’ itl - r (1.17) 

In a medium with ~nden~ng nonlinearity the smallest dimension of a stationary solu- 

tion is bounded below by k / (M - y). If function (qiL) is unbounded, the effective dimen- 

sion of stationary distribution tf> can be as small as desired. 

Let us briefly consider the basic properties of solutions of Eq. (1.2) in the case of a 

finite region. The proof of existence of a positive solution of that equation with bound- 

ary conditions cp (rl) = ‘p (CO) = 0 and r1 < r < w for m = I,2 is similar, It can be 

proved that for rl --+ w the functional 

For m = 0 (one-dimensional space) this boundary problem has no solution. Multiplying 
(1.2) in this case by drp i dr, we obtain the first integral 

f dqs ‘2 

t-_) dr + 7p-F (cp-3) = c (1.19) 



Since for r - M we have tly. ! C/F - o and v - 0 , hence for a stationary solution c = = 
0. This implies that at point I’ L= r1 not only q (rl) I= #, but also dv ! dr, = 0. Equa- 

tion (1.19) with boundary conditions cifp/dr,= C+ (rl) _ rp (w)=” has a unique solution 
rp = 0. This shows that in the one-dimensional case only the fundamental mode exists, 

while any higher modes are absent. 
For boundary conditions dg: ,’ rir 1 ~==,~ == cp (rl) = 0 or cp (rl) = q~ (r2) = i 0 the proof 

of existence of positive solutions in a finite region of fairly large size is similar to that 

in the case of an infinite region, As implied by inequality (1.17), Eq. (I, 2) has no finite 
solutions when the size of the region is small (n’l < k / (M - y)) . It can be proved that 
the exact minimum size of a region for which Eq. (1.2) has no solution is equal to the 

minimum size of a region in which for M’ = M and related boundary conditions there 

exist finite positive solutions of Eq. (1.4). For boundary conditions dv i tir I~_=” 
y (r,f =-: o the critical size of the region is r* -=m zc i v&f -- y when m -I- 0.2 and r* I- 

x1 : vrG when 1~ T--= 1. When the region approaches its critical size rnax up and the 

derivatives at the region boundary infinitely increase 

(1.20) 

In a region of smaller than critical size Eq. (1.2) has no finite solutions, 

2, Higher modea, When function f ((~2) is unbounded, Eq. (1.2) for 772 = 1,2 
can have in addition to the positive solution (fundamental mode) a denumerable set of 

solutions with finite energy which vanish exactly )I times, where ?i is the number ofthe 

mode fl-4, 111. A similar theorem is valid for a bounded positive monotonically in- 
creasing function f (92). 

let us divide the whole interval u <: r < w into R parts so that in each subinterval 
ri B r << riT19 i = I,2 ,..., ,L , Eq. (1.2) would have a positive solution ‘pi which satisfies 
the boundary condition cpi (ri) z~: (li (ri+j) = O, i = 2,3,..., rz , (for the first interval it 
must satisfy the boundary condition d~grldrl,,~= 0 and ‘pi (rz) -~- 0). It follows from the 

results obtained in Sect. 1 that for m = 1,2 such subdivision is always possible. We in- 

troduce a ~ntinuo~ function Y,_l(r) which in each subinte~al [T;, riirl is equal to 
the solution (-l)i-lcpi (r). Evidently Y,_i (r) satisfies Eq. (1.2) throughout the space 

except, possibly, at points r = ri, i = 2,3,..., n, where its derivatives may be disconti- 

nuous. 
Let us prove that the division into subspaces can be made so that at all points r >, 0 

the function Y,,_l ( ) r would have continuous first and second derivatives and would be 
a solution of Eq. (1.2) throughout the space. For this it is sufficient to chose a subdivi- 
sion which would yield the minimum of functional fll] 

Hn-1 (r2, r3, . . .,r,,) = $j(~)2+r~_l-F(~~_r)Jdu= 

which is a continuous function of the variables r2, r3,.,., r, [15]. The existence of mini- 
mum follows from the positiveness of functional H,,_l and from the properties of posi- 
tive solutions of (1.18) and (1.19). According to [ 153 
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Since at the minimum all derivatives aH,,_, / ari = 0, hence it follows from (2.1) that 

dv?,.,_.i / dr is continuous for all r 3 0. Consequently there exists a division into subspa- 

ces for which function Y,_~ (r) has continuous derivatives, is a solution of Eq. (1.2), and 

has exactly n - 1 zeros. 

On the basis of obtained results it is possible 
to state that the monotonic increase, bounded- 

Fig. 1 Fig. 2 

ness, and positiveness of functions f (92) are sufficient conditions for the existence of a 
denumerable set of stationary solutions with ~lind~~l or spherical symmetry. 

The expounded theory was tested by numerical solution of Eq. (1.2) in two- and three- 

dimensional cases with f = cp’ / (1 + (pz). A denumerable set of symmetric solutions 
with finite energy was obtained in complete agreement with the theory. The related 

distribution of amplitudes for the first three modes for y = 0.5 are shown in Fig. 1 

(m = 1) and Fig. 2 (m = 2). 

An extension of this theorem to positive monotonically increasing unbounded func- 

tions f (qP) of power increase is possible. The existence of solutions of the related vari- 

ational problem is proved with the use of interpolation inequalities. All subsequent 

analysis is effected by following the scheme proposed here. In part&Jar, a denumerable 

set of axially symmetric solutions exists for functions f (tpz) of the form 

Note that unbounded functions f ((p2) have solutions in any arbitrarily small region. If 

function f ($1 does not satisfy the conditions of theorems presented above, the existence 

of stationary solutions is determined by the particular form of function f (q2) and requi- 

res special investigations in each case [8, 91. 

The author thanks N. G, Vakhitov for carrying out numerical calculations and G. V. 
Skrotskii for useful discussion of obtained results. 
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